

Florent Larrouturou Doctorant

Cyril Caliot

Chargé de Recherche

Cyril.Caliot@promes.cnrs.fr

Gilles Flamant

Directeur de Recherche

JERT 2015

Journées d'étude en

Rayonnement Thermique

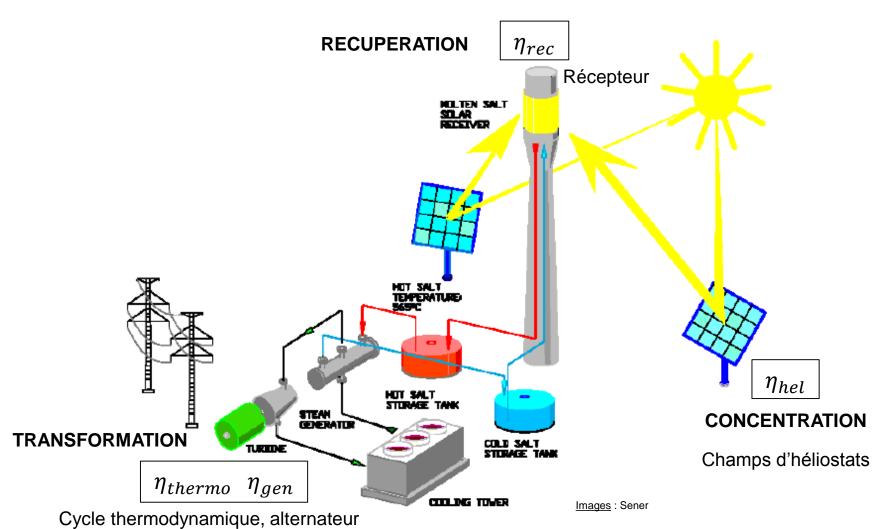
26-27 novembre 2015, ISAE-ENSMA, Poitiers

Projet NOOR Ouarzazate, Maroc

NOOR 3 en construction (2015-2017):

- Tour (225 m)
- HTF sels fondus (290-565 °C)
- Stockage sels fondus 8h
- Turbine vapeur 150 MW
- 0.15 USD/kWh (13 c€/kWh)

NOOR 2 en construction (2015-2017):


- Cylindro-parabolique
- HTF huile thermique (293-393°C)
- Stockage sels fondus 7h
- Turbine vapeur 200 MW
- 0.14 USD/kWh

NOOR 1 (2015):

- Cylindro-parabolique
- HTF huile thermique (293-393°C)
- Stockage sels fondus 3h
- Turbine vapeur 160 MW
- Investissement 1.042 milliards €
- 0.189 USD/kWh

Fonctionnement de centrale à tour

Solutions d'amélioration

Concentration

Champs d'héliostats

Optimiser la disposition du champ Améliorer l'optique des héliostats

Augmenter la réflectivité

Augmenter la durabilité des héliostats

Standardiser le champ

Récupération

Récepteur

Optimiser les propriétés radiatives

Augmenter la durabilité des matériaux

Améliorer le fluide caloporteur

Augmenter les échanges thermiques

Stockage

Stockage direct du fluide caloporteur Augmenter la température du stockage Thermocline

Transformation

Augmenter la température

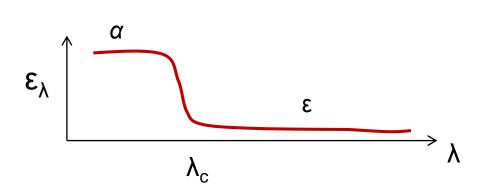
Améliorer l'hybridation

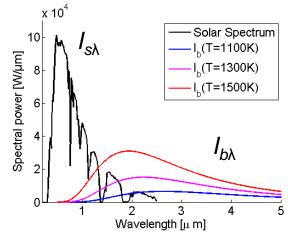
Standardiser

Rendements

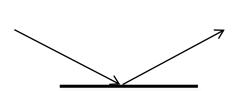
 η_{hel}

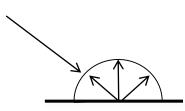
 η_{rec}

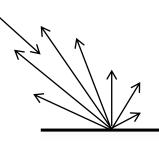

 η_{thermo}


 η_{gen}

Propriétés radiatives sélectivités


 La sélectivité spectrale idéale permet une absorption maximale du flux solaire et une émission infrarouge minimale



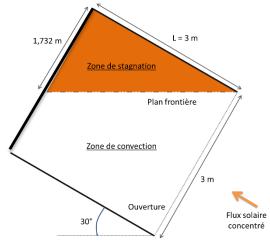


• La sélectivité directionnelle caractérise la dépendance angulaire du flux réfléchi

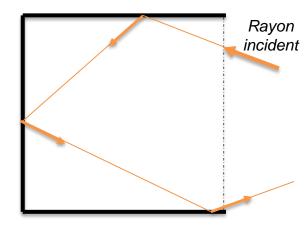
 \Rightarrow Augmenter α_{sol} dans les récepteurs cavité (nbre de réflexions)

Objectif et démarche

<u>Objectif</u>


- Augmenter le rendement de récepteurs solaires à haute température
- Quantifier l'influence des propriétés radiatives sur les rendements de centrale
- Améliorer les propriétés radiatives des récepteurs

<u>Démarche</u>


- 1. Développer un modèle de récepteur haute température (et un modèle de centrale)
- 2. Réaliser une étude de sensibilité avec les propriétés radiatives comme paramètres
 - Sélectivité spectrale
- 3. Etudier l'influence de la microstructure sur les propriétés radiatives

Modèle de récepteur

$$\eta_{rec} = 1 - \frac{P_{ref} + P_{em} + P_{conv}}{P_{inc}}$$

Hypothèses

- Parois isothermes, opaques
- Milieu non participant
- Optique géométrique
- Absence de vent
- Absence de conduction/convection en face arrière

Paramètres

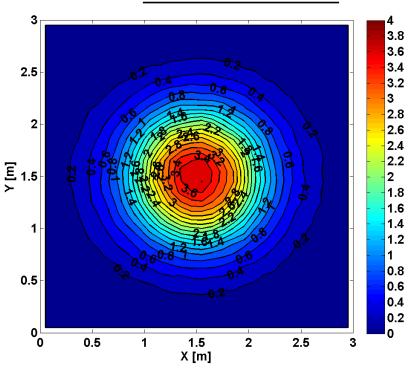
- Géométrie (plan/cavité)
- Propriétés radiatives spectrales
- Température des parois

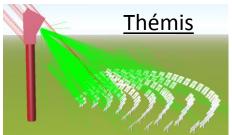
P_{ref} et P_{em} sont calculés par des simulations Monte-Carlo (cavité)

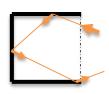
$$P_{conv} = h S (T_w - 300K)$$

<u>Pertes par convection du récepteur cavité, S=36m²</u>:

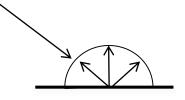
• Modèle de Clausing : $h = 7.3 \text{ W m}^{-2} \text{ K}^{-1}$

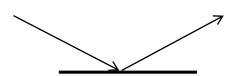

(CFD: $h = 6.4 \text{ W m}^{-2} \text{ K}^{-1}$; Paitoonsurikarn: $h = 6.8 \text{ W m}^{-2} \text{ K}^{-1}$)


Pertes par convection du récepteur plan (Ra ~ 5.10¹⁰) S=9m² :


Modèle de Churchill and Chu: h = 5.8 W m⁻² K⁻¹

Modèle de récepteur




BRDF

$$f_r(p, \lambda, \overrightarrow{w}_i, \overrightarrow{w}_r) = \frac{dL_r(p, \lambda, \overrightarrow{w}_i, \overrightarrow{w}_r)}{dE(\lambda, \overrightarrow{w}_i)}$$

$$f_r(p,\lambda,\vec{w}_i,\vec{w}_r) = a_d f_{diff} + (1-a_d) f_{spec}$$

$$f_{diff} = \frac{f_r^{\prime \cap}}{\pi}$$
 $f_{spec} = \frac{\delta(\overrightarrow{\omega_r} - \overrightarrow{\omega_s})}{\overrightarrow{n}.\overrightarrow{\omega_i}} f_r^{\prime \cap}$

Modèle de centrale

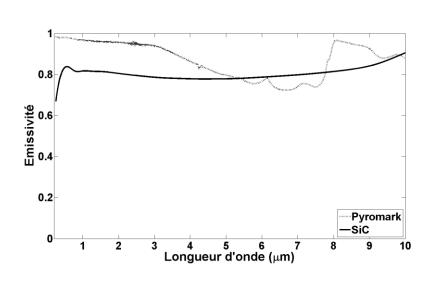
$$\eta_{global} = \eta_{hel} \, \eta_{rec} \, \eta_{thermo} \, \eta_{gen}$$

Rendement optique du champ d'héliostats $\eta_{hel} = 70 \%$

Rendement thermodynamique endoreversible

Rendement de Chambadal-Novikov

Prise en compte des irréversibilités lors des échanges avec l'extérieur

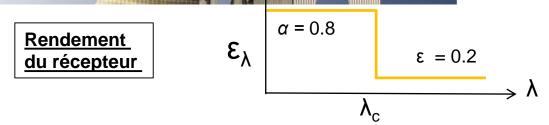

$$\eta_{thermo}$$
 = 1- $\sqrt{\frac{T_f}{T_c}}$ $T_c = T_w - 150 \text{ K}$

Rendement générateur $\eta_{gen} = 95 \%$

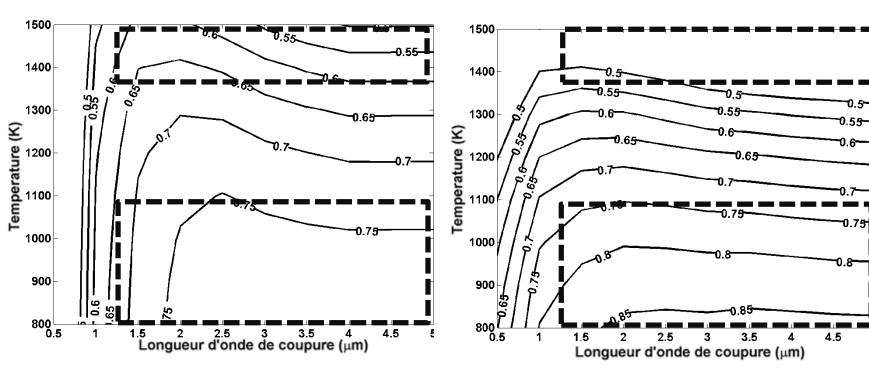


Récepteur HT de référence

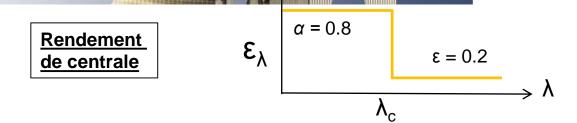
Récepteur de référence en α -SiC Parois diffuses ($\rho \sim 0.2$)


cavité : η_{rec} ; η_{thermo} ; $\eta_{global} = f(T_w)$

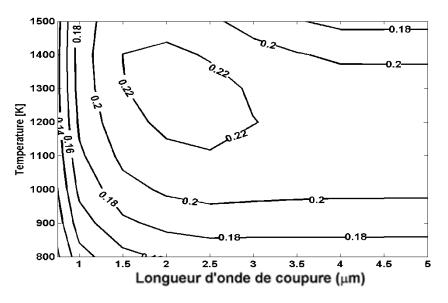
Cavité (T=1100 K) ; $\eta_{ref} = 22.8 \%$

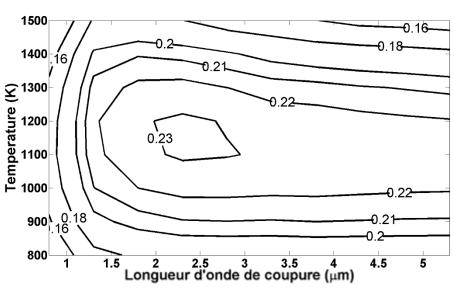

Plan (T=1200 K); $\eta_{ref} = 21.4 \%$

Et. Param. : sélectivité spectrale



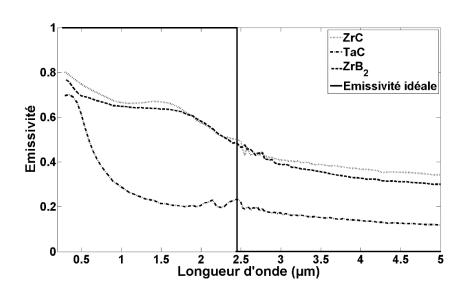
Plan; C = 580

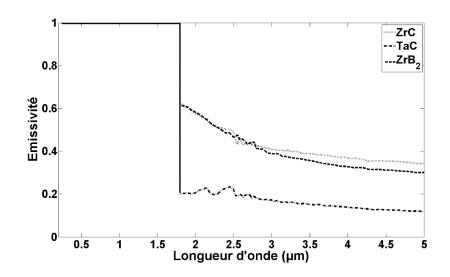

Cavité ; C = 580


Et. Param. : sélectivité spectrale

Plan; C = 580

Cavité ; C = 580


Etude paramétrique Conclusion


	<u>Plan</u>	<u>Cavité</u>
Récepteur de référence (gris)	21.4 %	22.8 %
α = ε = 0,8 Réflectivité diffuse (aa = 1)	1100 K	1100 K
Récepteur corps noir	26.9 %	25.7 %
$\alpha = \epsilon = 1$	1200 K	1200 K
<u>Sélectivité spectrale</u> (ad = 0,1)	22.7 %	23 %
$\alpha = 0.8$; $\epsilon = 0.2$; $\lambda_c = 2~\mu m$	1300 K	1200 K
Sélectivité spectrale idéale	29.2 %	27.8 %
$\alpha = 1$; $\epsilon = 0$; $\lambda_c = 2 \ \mu m$	1400 K	1300 K

Utiliser la sélectivité spectrale naturelle de matériaux réfractaires Maximiser α_{sol} par microstructuration de la surface

Matériaux et spécifications

Choix de **ZrC, ZrB2, TaC** pour leur tenue à haute température sous air

Objectif : atteindre une sélectivité quasi-idéale en **microstructurant** la surface du TaC

RCWA (GD-Calc)

Equations de Maxwell

$$\operatorname{rot} \widehat{\mathbf{E}} = -\,\mu \frac{\partial \widehat{\mathbf{H}}}{\partial t}$$

$$\operatorname{rot}\widehat{\mathbf{H}} = \varepsilon \frac{\partial \widehat{\mathbf{E}}}{\partial \mathsf{t}} + \sigma \, \widehat{\mathbf{E}}$$

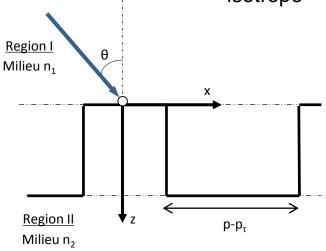
 $\begin{cases} E_y(x+p,z) = e^{ik_I} p \sin \theta E_y(x,z) \\ \text{Séparation des variables d'espace} \\ \text{Conditions de Floquet} \end{cases}$

$$E_y^I = e^{i k_1 (x \sin \theta + z \cos \theta)} + \sum_{s=-\infty}^{+\infty} R_s e^{i k_{xs} x - i k_{I,zs} z}$$

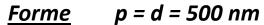
Réflectivité directionnelle hémisphérique

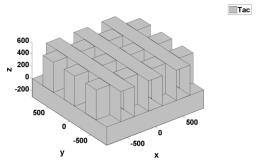
$$\rho_{\lambda}^{\prime \cap} = \sum_{s=1}^{N_D} R_{\lambda,s}$$

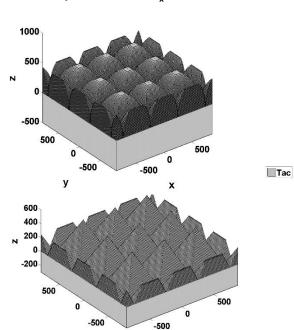
Emissivité directionnelle


$$\epsilon'_{\lambda} = 1 - \rho'^{\cap}_{\lambda}$$

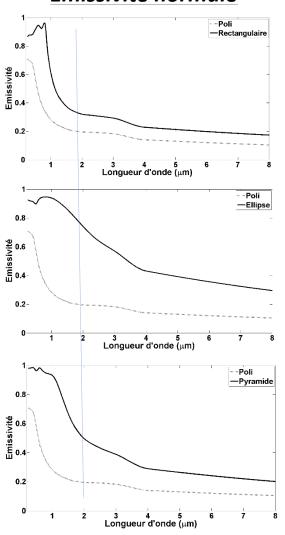
Hypothèses


Permittivité périodique


Continuité des champs

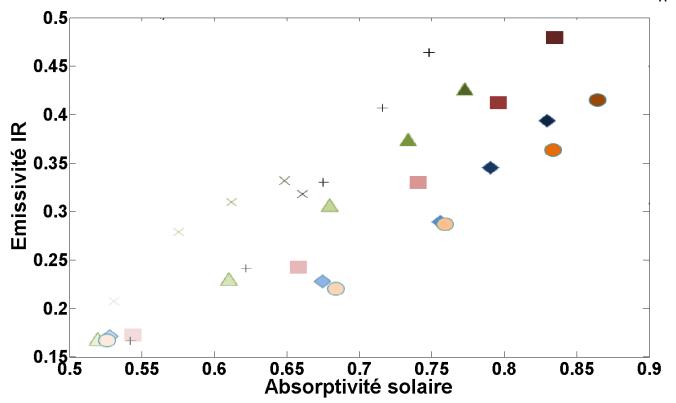

Matériau linéaire isotrope

Microstructuration bipériodique



У

Emissivité normale


Influence de la géométrie et des dimensions sur αsol et εIR

Microstructuration:

asol VS. EIR

$$\alpha_{sol} = \int \epsilon_{\lambda} I_{s\lambda} d\lambda / \int I_{s\lambda} d\lambda$$

$$\varepsilon_{\rm IR} = \int \varepsilon_{\lambda} I_{b_{\lambda}}(T) d\lambda / \int I_{b_{\lambda}} d\lambda$$

asol et εIR pour différentes géométries et périodes

Hauteur fixée à 1000 nm. Périodes de 200 (points clairs) à 1000 nm (foncés)

Croix inclinée : rectangulaire ; croix inclinée : elliptique ; triangle : pyramide 0.3 ; carré : pyramide 0.5 : rond: pyramide ; losange : pyramide 2

Conclusion et perspectives

Conclusions

Valeurs des **températures maximales** de parois de récepteurs solaires (fonctionnement sans hybridation) : **1200 K** pour une paroi noire

L'absorptivité solaire est le paramètre clé à maximiser.

Etude de l'émissivité normale de microstructures bi-périodiques

- forte influence de la **forme** (hauteur, période)
- relief **pyramidal**
- augmentation concomitante de $lpha_{sol}$ et $oldsymbol{arepsilon}_{IR}$

Perspectives

Tests de tenue en température sous air de matériaux HT (TaC, ZrC, ZrB2, épaisseur d'oxyde)

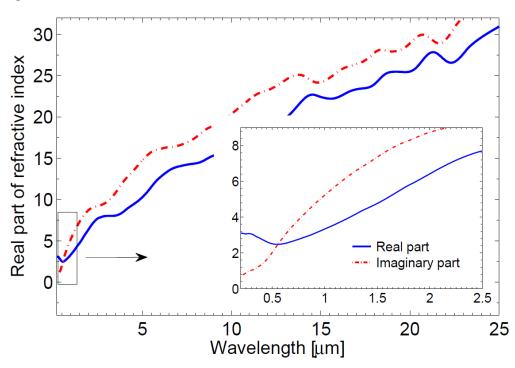
Réalisation de microstructures et mesure de réflectivité spectrale

Calcul de l'émissivité hémisphérique de reliefs bi-périodiques

Merci de votre attention

MICROSTRUCTURES

Indices optiques


Indices optiques du TaC

- 1. Fabrication des échantillons
- 2. Mesure de la réflectivité
- Calcul des indices de réfractions

Equations de Kramers-Kronig

$$n(\lambda) = \frac{1 - R(\lambda)}{1 + R(\lambda) - 2\sqrt{R(\lambda)}\cos\theta(\lambda)}$$

$$\boldsymbol{n}(\lambda) = \frac{-2\sqrt{R(\lambda)}\sin\theta(\lambda)}{1 + R(\lambda) - 2\sqrt{R(\lambda)}\cos\theta(\lambda)}$$

Indices de réfraction du TaC

INTRODUCTION

Concentration

Concentration linéaire

 $\mbox{Concentration} \approx 100 \\ \mbox{Température fluide} \approx 800\mbox{-}900 \ \mbox{K}$

Récepteur mobile

Cylindro-parabolique

Récepteur fixe

Fresnel

Concentration ponctuelle

Concentration > 1000 Température fluide > 1000 K

Dish

Tour